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Özet

Antibiyotikler, zararlı bakteriyel patojenleri yok ederek ya da 
inaktif hale getirerek etki gösteren ajanlardır. Günümüzde an-
tibiyotiklerin tasarlanmasında genom bilimi, proteom bilimi, 
metabolom bilimi ve interaktom bilimi gibi “om” bilimlerinden 
(ya da “omik” bilimlerden) büyük ölçüde yararlanılmaktadır. Bu 
derlemede bu bilimlerin basitten karmaşığa giden farklı yönle-
ri tartışılmaktadır. Piramidin en altındaki basit dizi analizinden 
üst kısmındaki karmaşık -yapısal, fonksiyonel ve interaksiyonel- 
analizlerin tümü, omik bilimlerin kapsamına girmektedir. Dizi 
karşılaştırması, bakterilerdeki ilaç direncine ilişkin yeni bilgiler 
sunabilmesi nedeniyle, yeni antibiyotik geliştirilmesinde son de-
rece önemlidir. Öte yandan, konak proteininin dizilenmesi, etkili 
antibiyotiklerin sentetik olarak üretilmesine olanak tanıyabilir. 
Günümüzde bilgisayar destekli bağlanma teknikleri kullanıldığı 
yapıya dayalı molekül tasarımı, ilaç tasarım süreçlerinde geniş 
ölçüde kabul gören rutin bir işlem haline gelmiştir. Ayrıca, mik-
roçip ekspresyonu, protein-protein etkileşimli essey yöntemle-
riyle elde edilen yeni ve yüksek verimli veriler, çok daha fazla 
ilaç hedefinin keşfi için yeni ufuklar açmaktadır. Konak-patojen 
etkileşimini sistemler düzeyinde anlamak için gösterilen yoğun 
çabalar, tüberküloza ve benzer pek çok karmaşık hastalığa kar-
şı etkili antibiyotiklerin tasarlanması sürecini hızlandırmıştır. 
Özetle, bu derlemede omik bilimlerin, yeni antibiyotiklerin keşfi 
alanındaki paradigmayı, gittikçe artan bir biçimde nasıl değiş-
tirdiğine ilişkin çeşitli örnekler sunulmaktadır. Omik yaklaşım, 
önümüzdeki dönemde bu süreci daha da hızlandıracak ve anti-
biyotiklerin maliyetini daha da düşürecektir.  
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Abstract

Antibacterials are agents that act against pernicious bacterial 
pathogens by killing or inactivating them. At present, design-
ing antibacterials have been assisted greatly by omics scienc-
es- genomics, proteomics, metabolomics and interactomics. 
This review discusses different aspects of the omics sciences 
in simple to complex hierarchies. From the simplest of se-
quence analysis to more complex on the pyramid -structural, 
functional and interactional analysis- all comprises the grand 
ambit of omics science. Sequence comparison can reveal nov-
el information about drug resistance in the bacteria and thus 
can be of momentous significance for designing improved an-
tibacterials. On the other hand, sequence characterization of 
the host protein can lead to production of effective antibiotic 
synthetically. Nowadays, structure based molecular designing, 
using computational docking techniques, has become a widely 
accepted routine work in drug designing processes. Moreover, 
new high-throughput data from microarray expression, pro-
tein-protein interaction assay are opening up a new vista for 
detecting more and more drug targets. Extensive focus put on 
to understand host-pathogen interaction on systems level has 
greatly accelerated the process of designing effective antibac-
terials against tuberculosis and many such complex diseases. 
Summarizing, this review exemplifies various different ways 
how increasingly omics science is transforming the paradigm 
of discovering novel antibacterials; omics approach is all set 
to speed up the process and bring down the expenses of the 
antibacterials even more in time to come. 
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Introduction
Antibacterials, alternatively known as antibiotics, 

fall into the broad group of small molecules that act 
against bacteria by various mechanisms (1-4). A key 
difference between antibiotics and vaccine is that 

a vaccine may work to bolster immune responses 
against pathogenic infection and essentially do not 
act directly on the microbe itself whereas in contrast 
antibacterials works against the pathogens directly to 
kill or inactivate them (5).
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Today, antibacterial designing has become greatly 
assisted by omics sciences. Omics sciences include a wide 
spectrum of themes: genomics, proteomics, metabolomics 
and interactomics. Genomics deals with gene information 
and makes sense of it (6). Proteomics involves the study 
protein structure and function (7). Metabolomics investigates 
integrated information about metabolic pathways (8) 
whereas interactomics refers to the study of all the possible 
interactions, such as DNA-protein, protein-protein, protein-
small molecule interactions within living cells (9-11). Omics 
sciences are helpful in elucidating the sequence, structure 
and functional information about both the pathogen and 
host genes and proteins (12-14).

Complete genome sequences of bacterial organisms 
have had a revolutionary effect on the process of designing 
new antibiotics. The completion of nearly 30 bacterial whole-
genome sequences and ongoing sequencing projects of 
over 100 microbial organisms will allow researchers to probe 
novel therapeutic targets (15). The search for new antibiotics 
can be extensively assisted by computational methods such 
as homology-based analyses, structural genomics, motif 
analyses, protein-protein interactions, molecular docking and 
experimental functional genomics (15). However the greatest 
obstacle of computational assays is massive volume of data 
from the genome sequences and making sense of it. The 
sequence of microbial pathogens catalogs every gene product 
that would be relevant for the host-parasite interaction and 
potential antibiotic drug target (16,17). Therefore, scientists 
interested in discovering antibiotics must extract useful 
information from genomes through comparative, functional, or 
structural genomics in order to simplify drug target selection.

Whole Genome Sequencing:  
A Gateway to Designing Better Drug

Sequence Comparison
Useful antibiotic development and the bacterial 

whole-genome sequences go hand in hand. However, 
the concurrence of the two is even more significant as 
increasingly resistance of commonly used antibiotics 
have been developed in bacteria. A growing prevalence of 
infections, and the emergence of new pathogenic organisms 
is challenging current antibiotics pool (18). When antibiotics 
synthesized afresh resembles that of the ones used earlier to 
ones already rendered ineffective, resistance is more likely to 
happen (19). This poses a great concern for the clinicians and 
world health in large, as resistant-to-antibiotic bacteria can 
trigger a massive global epidemic. Ideally, new antimicrobial 
compounds should have novel mechanisms of action. 

Phylogenetic trees are an essential tool that are used to 
identify recognized sequence homology pattern which can 
be very useful to identify essential genes for the pathogens 
(20). One can also design a antibacterial that works against 
an entire phylogenetic group in order to target all of the 
organisms with a broad-spectrum antibiotic. Thus the 
concept of universal antibacterials has flourished using 
sequence comparison tools.

Well before whole genome sequencing for bacteria 
became popular, sequencing of many apparently important 

genes was carried out. However, with DNA sequencing 
becoming a household scientific exercise, sequence 
comparison has been an exciting technique that took the 
world by storm. Sequence comparison has been an exciting 
new technology to compare sensitive and resistant strains 
of the bacteria. In a widely cited paper authored by Fournier 
et al. (21) a similar study was carried out for a multidrug 
resistant strain. Similar studies have been carried out for 
Streptococcus, Staphylococcus and Deinococcus (22-26). 
Several computational tools and online databases have 
also gained prominence over the years (27). Some of the 
computational databases are enlisted in Table 1.

Sequence Characterization
Sequence characterization is another key theme associated 

with designing functioning antibiotic target. Often a motif 
or a profile is found in the genomic or peptide sequence 
of the antibacterial targets (73). Sequence characterization 
is also of great importance for analyzing actions of the 
peptide antibiotics (74). Thus comparison between resistant 
and sensitive strain requires a detail characterization of the 
protein or genomic sequence of the both target molecules 
and peptide antibiotics (75,76).

Commonly used antibiotic drugs target series-specific 
genes, unique enzymes and membrane transporters (77). The 
mechanism of action how antibiotics mediate its response 
is diverse; some antibiotics prevent protein synthesis and 
nucleic acid replication, some inhibit cell wall or membrane 
synthesis, some rather prevents membrane transport (78). In 
this regard, all the bacteria have a special set of proteins that 
are responsible for either causing virulence or taking hold 
of host machinery. Identifying those genes are of supreme 
importance and hence sequence characterization for bacteria 
for which no sequence information is deposited of yet, is the 
only option in that case. 

To begin with, in a novel bacteria sequence characterization 
flow chart, scientists start characterizing all the open reading 
frames of bacterial sequences and make a map of all genes 
and gene products (79,80). Afterwards, they must pick out 
the genes that are essential to cell survival or growth, which 
are most effective as antibiotic targets. Often the line of 
action to detect this genes is to go for a random mutagenesis 
and subsequent phenotyping of the bacteria (16). However, 
the job today has become a lot easier as representative 
genome sequences from almost all the pathologically and 
economically important bacteria has already been done. And 
with this being done even the primary sequence comparison 
programs, like BLAST or PSI-BLAST, can determine gene 
functions by sequence homology. 

Motif analysis is another strategy to identify potential 
antibiotic targets among genes with unknown functions. 
Many databases, including PROSITE, InterPro, BLOCKS, Pfam 
etc., can search for motifs in a sequence (16,81-93). The 
motifs may show the approximate biochemical function of 
the gene. 

Gene fusion is another computational method to infer 
protein interactions from genome sequences. Proteins 
that interact with each other tend to have homologs in 
other organisms. This evolutionary calling-of-function 
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method often gives out functional information for target 
proteins (16).

Function Based Techniques Help Selecting Soft 
Targets for Designing Antibiotic against It
Assigning functions to the genes is one of the major steps 

involved in designing soft targets in bacteria for which drug 
can be designed. Identifying the genes that are essential for 
proper functioning of the bacteria is thus also important. Many 
online databases contain these information and thus can be 
tremendously useful for antibacterial designing (94,95). 

Microarray or Fuzzy Algorithms
There are some disadvantages associated to sequence 

homology based methods. About 25-40% of the genes in a 
bacterial genome usually do not find matches with known 
genes (79,80). Furthermore, sequence homology is based on the 
assumption that similar sequences will share similar functions 
-an assumption that does not hold true in many cases where 
similar sequences are structurally and functionally diverse.

Therefore, alternatives to sequence homology techniques 
had to be established. To predict the function of a gene, cluster 
analysis of the expression profile has been extensively used. 
Cluster analysis uses microarray technology to analyze gene 

expression in order to organize genes into functional groups 
(96). Genes for which no annotation has been assigned can be 
classified into a functional group and thus can be assigned a 
functional annotation on the basis of microarray data instead 
of sequence data. Protein synthesis patterns are also useful to 
analyze the antimicrobial effect certain drugs would have on 
particular necessary or important proteins (97).

Systems Biology
Using systems biology to design drugs have been a 

popular approach in the post genomic era (98). Systems 
biology considers genes and proteins to be integrated to 
each other and hence takes up an integrated approach for 
drug designing (99,100). Protein-protein interaction (PPI) 
and gene regulatory networks (GRN) are one of the most 
recurrent themes of systems biology in designing drugs. 
PPI exposes novel information about whole proteome 
interaction status (101,102). A common strategy of the 
systems biology investigators has been looking for most 
densely interconnected protein, known as hub proteins, in 
the systems map; hub proteins often make a good antibiotic 
target (103-105). Similarly DNA-protein interaction and GRN 
has been an important tool to understand host pathogen 
interaction and host cellular mechanism (106,107).
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Table 1. Databases and Online Tools Often Used for Comparative Genomics

Database/Tool	 Use	 Reference	 Web Link

MBGD	 Comparative analysis of completely	 (28-30)	 http://mbgd.genome.ad.jp/ 
		  sequenced microbial genomes	

WormBase	 Information about Caenorhabditis elegans	 (31)	 http://www.wormbase.org/ 
		  and related nematodes

JCVI CMR	 Cross-genome analysis to identify differences	 (32)	 http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi 
		  and similarities between the genomes		

Vista	 To examine pre-computed whole-genome	 (33)	 http://genome.lbl.gov/vista/index.shtml 
		  alignments of different species

HOBACGEN	 Comparative genome analysis using protein genes	 (34,35)	 http://pbil.univ-lyon1.fr/databases/hobacgen.html 
		  from bacteria, Archaea, and yeasts

PipMaker	 Comparing two long DNA sequences to identify	 (36)	 http://www.bx.psu.edu/miller_lab/ 
		  conserved segments and for producing informative,  
		  high-resolution displays of the resulting alignments 

PLAZA	 Plant comparative genomics	 (37,38)

UCSC Genome	 Contains the reference sequence and	 (39-52)	 http://genome.ucsc.edu/ 
Browser	 working draft assemblies for a 
		  large collection of genomes

Ensembl	 Genome databases for vertebrates	 (53-63)	 http://uswest.ensembl.org/index.html 
		  and other eukaryotic species

PlantGDB	 Provides genome browsers to display current	 (64-68)	 http://www.plantgdb.org/ 
		  gene structure models and transcript evidence from 
		  spliced alignments of EST and cDNA sequences

LegumeIP	 Comparative genomics and	 (69)	 http://www.biosharing.org/biodbcore-000056 
		  transcriptomics of model legumes

ShiBASE	 Comparative genomics of Shigella	 (70)	 http://www.mgc.ac.cn/ShiBASE/

CoGemiR	 Conservation of microRNAs during evolution	 (71)	 http://cogemir.tigem.it/ 
		  in different animal species

Neisseria Base	 Genome browser for Neisseria meningitidis	 (72)	 http://nbase.biology.gatech.edu

http://mbgd.genome.ad.jp
http://www.wormbase.org
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
http://genome.lbl.gov/vista/index.shtml
http://pbil.univ-lyon1.fr/databases/hobacgen.html
http://www.bx.psu.edu/miller_lab
http://genome.ucsc.edu
http://uswest.ensembl.org/index.html
http://www.plantgdb.org
http://www.biosharing.org/biodbcore
http://www.mgc.ac.cn/ShiBASE
http://cogemir.tigem.it
http://nbase.biology.gatech.edu


Systems biology has been applied assaying drugs against 
pathogens with complex life cycle. Detecting a universal 
drug against these pathogens have been difficult as they 
drug target proteins are often poorly understood. However, 
today systems approach has been applied successfully to 
design antibacterials against tuberculosis and gastric ulcer 
(108-111).

Structure Based Techniques Assists Designing 
Molecular Medicine against Pathogens
Although assigning gene function by cluster analyses 

is quite useful as described in the earlier section, they are 
also subject to significant level of discrepancies as well. 
Some proteins have multiple functions and likewise, some 
functions require multiple proteins (8).

Therefore, structural genomics has been used as a better 
method of drug target selection. Function is more directly 
related to its structure than its sequence (96). Now even 
considerable number of protein 3D structures in the native 
tertiary form has also been deposited in structure databases. 
That makes possible the task of comparing different protein 
structures and annotating functions accordingly. Some such 
protein structure databases are RCSB Protein Data Bank 
(PDB), PDBsum, ModBase, Proteopedia, 3D Complex, SCOP 
etc. (112-116).

Another property of the drug target should be non-
redundancy that is the target should be structurally different 
or nonexistent in humans. Checking for structural homology 
against a human genome protein structure database would 
determine whether the antibiotic against that drug target 
would also interfere with any human functions.

Another key advantage of structure based medicines 
is that the action of the drug is very predictable in 
nature. Because the drug-protein interaction involves 
a complementary fit to each other and not any co-
expression information, they are remarkably specific in 
their mode of action most of the times (117-121). These 
very properties have made structural methods an ideal 
choice for selection of drug targets. However, structural 
databases are not complete since quality protein-crystals 
are difficult to form and hinders x-ray crystallography 
(122). However, nuclear magnetic resonance can determine 
3D structure determination. Also, computational modeling 
is approaching accurate functional predictions based on 
alignment of amino acid sequences (123).

The use of computational methods and expression 
profiling all point to the need for a non-redundant, complete 
database of structural and functional annotation of the 
proteins from known pathogenic bacteria genomes and the 
human genome, once it is completed. The organization, 
accuracy, and easy accessibility of such databases are crucial 
in the hunt for novel antibiotics. Perhaps a program can be 
specifically designed to highlight antibiotic drug targets 
in query sequences. This program would scan structural 
databases and other bacterial genomes for homology and 
similar folds. The program could be complemented by a 
central, tailored database that reorganizes data for the most 
efficient search of novel antibiotic targets, for example, each 

protein or gene that is essential to certain bacterial species. 
For example, the database could include the protein’s 
phylogenetic group, 3D structure, proteins of similar structural 
homology, and whether any similar protein exists in humans. 
It could also use foreign keys to connect to other databases 
that catalogue which known antibiotics and inhibitors are 
used against similar targets.

Conclusion
Summarizing, the computational methods and omics 

sciences has become an integral part of designing novel 
antibacterials. Therefore, along with structure function 
annotation to ensure rapid and effective communication of 
the in vitro results has become an absolute essential in this 
regard. In silico experimentations have also added to the 
data wealth and thus an efficient data management is also 
the call of the hour.

One should not get carried away by the whole-genome 
sequence data available; there are still many hurdles to 
overcome. One of the major problems is the localization of the 
drug target and an efficient drug delivery that can hardly be 
analyzed by omics tools (124). Therefore requirement of drug 
response databases -databases that deposit pharmacokinetic 
and pharmacodynamic data- are also gaining prominence. 
Despite limitations there are some databanks growing for 
small molecules and their properties (125). Approval and 
strict patent laws is another administrative hurdle that makes 
commercialized antibacterials something extremely hard to 
materialize. Lastly but more importantly, an indiscriminate 
use of antibiotics is, in an unprecedented speed, making 
more and more bacterial species resistant and this is putting 
unmanageable pressure to the demand of antibiotic. Scaling 
up antibacterial production has improved to a great extent 
over the last few decades, yet the supply of antibacterials 
hardly catches up to the demand (126). All these pose severe 
challenges for designing antimicrobials. However, it is to be 
noted that never before technologies, computer aided tools, 
huge workforce and human intelligence worked in so unified 
nature. Hence, it would not be an overstatement to say that 
the days today for novel antibacterials designing are brighter 
than it has ever been before. 
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